DPP - 4 (Current Electricity)

Video Solution on Website :-
 https://physicsaholics.com/home/courseDetails/98

Video Solution on YouTube:- https://youtu.be/VQ1Y7ZGz3W4

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/53

Q 1. The terminal network shown in the figure consists of 6 resistors. The points A, C and E all are at potential 20 V while points B, D and F are at potential -10 volt then potential of junction O will be

(a) Zero
(b) 10 V
(c) 15 V
(d) -5 V

Q 2. Find the equivalent resistance between points A and B :

(a) 2Ω
(b) $\frac{2}{3} \Omega$
(c) $\frac{3}{2} \Omega$
(d) $\frac{1}{2} \Omega$

Q 3. In the circuit shown, the galvanometer shows zero current. The value of resistance R is :

(a) 1Ω
(b) 2Ω
(c) 4Ω
(d) 9Ω

Q 4. Two current elements P and Q have current voltage characteristics as shown below; Which of the graphs given below represents current voltage characteristics when P and Q are in series

Q 5. In the network shown in the figure below, calculate the potential difference between A and B ? $\left(V_{B}-V_{A}\right)=$
(a) 1 V
(b) -1 V
(c) 2 V
(d) -2 V

Q 6. Find the equivalent resistance between a \& b

(a) $\frac{7}{8} \Omega$
(b) $\frac{8}{7} \Omega$
(c) $\frac{6}{7} \Omega$
(d) $\frac{7}{6} \Omega$

Q 7. A battery of emf E and internal resistance r is connected across a resistance R. Resistance R can be adjusted to any value greater than or equal to zero. A graph is plotted between the current (i) passing through the resistance and potential difference (V) across it. Select the correct alternative(s) -

(a) internal resistance of battery is 5ohm
(b) emf of the battery is 20 V
(c) maximum current which can be taken from the battery is 4 A
(d) V-i graph can never be a straight line as shown in figure

Q 8. Consider an infinite ladder network. A voltage is applied between points A \& B. If the voltage is halved after each section. Find the ratio R_{1} / R_{2}.

(a) $1 / 2$
(b) $1 / 3$
(c) 2
(d) None of these

Q 9. The emf of the battery shown in the figure is given by -

(a) 6 V
(b) 12 V
(c) 18 V
(d) 8 V

Q 10. In the circuit shown in figure, the current through -

(a) the 3ohm resistor is 0.50 A
(b) the 3ohm resistor is 0.25 A
(c) the 40 hm resistor is 0.50 A
(d) the 4ohm resistor is 0.25 A

Q 11. There are two concentric spheres of radius a and b respectively. If the space between them is filled with medium of resistivity ρ, then the resistance of the inter gap between the two spheres will be
(a) $\frac{\rho}{4 \pi(b+a)}$
(b) $\frac{\rho}{4 \pi}\left(\frac{1}{b}+\frac{1}{a}\right)$
(c) $\frac{\rho}{4 \pi}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)$
(d) $\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)$

Q 12. The equivalent resistance between point A and B is -

(a) 4 r
(b) 2 r
(c) r
(d) $\mathrm{r} / 4$

Q 13. The equivalent resistance between A and B in the given circuit

(a) R
(b) $R / 2$
(c) $R / 3$
(d) $2 R / 3$

Q 14. A 10 V car battery with negligible internah resistance is connected to a series combination of a 4Ω resistor that obey's Ohm's law and a thermistor that does not obey Ohm's law, but instead has a current -voltage relation $V=\alpha I+\beta I^{2}$ with $\alpha=2 \Omega$ and $\beta=4 \Omega / A$. The current through the 4Ω resistor is
(a) 1 A
(b) $2 A$
(c) $2 / 5 \mathrm{~A}$
(d) 5 A

(a) 1 A
(b) 2 A
(c) 3 A
(d) 4 A

